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The velocity of the leading edge of a thermal (heat) wave increases exponentially if the density
of the gas in front of the leading cdge of the wave falls in accordance with a similar law. When
the wave propagates in a nonuniform atmosphere the shape of the leading edge may deviate
from spherical and ultimately the thermal wave may "break through" the atmosphere.

The fact that the shock wave arising from a strong explosion might break through the atmosphere was
predicted by Kompaneets {1]; this effect is due to the exponential increase in the velocity of the leading edge
of the shock wave in traveling upward. By comparison with this increase, the slow (power-law) change in
velocity, associatedwith the reduction in the specific energy of the gas with increasing volume of the shock
wave, becomes insignificant. An analogous effect may occur in the development of the thermal wave which
in a severe explosion precedes the shock wave [2]. It follows from consideration of a spherical thermal
wave that the velocity v of its leading edge is determined by the thermal diffusivity x =aT™ close to the lead-
ing edge (T is the volume —average gas temperature) and the volume of the wave

v= XV Vs (1)

If, following (3], we regard the specific heat of the gas C as constant (this restriction is not tunda-
mental) the thermal diffusivity y is determined in terms of the density of the gas and the Rosseland range
of light { in the following way: x =160T% /3 C (o is the Stefan —Boltzmann constant), i.c., it varies inversely
proportionally to a certain power of the gas density. This also applies to the cocfficient ¢ in the expression
approximating the dependence of y on T. In an exponential atmosphere in which p ~exp[—z/Z] the values of
x and @ increase exponentially with the height z; however, the characteristic scale of the changes in these
quantities Z; is smaller than the scale of the changes in air density Z. Hence, according to Eq. (1), in an
inhomogeneous atmosphere the leading edge of the thermal wave travels upward more rapidly than down-
ward, and its shape deviates from spherical.

As in the cage of a shock wave, a "pulling-out" effect at the leading edge may occur for a thermal
wave formed at a height at which its limiting radius R* (corresponding to the transition of a thermal into a
shock wave) is comparable with the scale of the change in the function a(z). The value of R* may be esti-
mated by equating the rate of energy transfer through thermal radiation oT4/p,CT (p,is the density of the
gas at the height of energy release) to the velocity of hydrodynamic motion, which is proportional to the
velocity of sound, in order of magnitude equal to VCT. SinceT = £/p,CV (E isthe total energy released), at
the instant of the transition of the thermal wave into a shock wave

R* = V' 2 Mgl " ve e (2)

If in accordance with [2] we assume that for p, ~1073 g/em? and E ~ 102! erg the value of R* is ap-
proximately 14 m, it follows from Eg. (2) that for the same value of E R=Z;~3 km if py= 1078 g/cmz, which
occurs at a height of about 70 km.

Let us consider the shape of the leading edge of a thermal wave, formed at a height at which R> Z,
in eylindrical coordinates, having their origin at the point of encrgy release. We use R(z, t) to denote the
coordinate of the leading edge, z, and z; the coordinates of the upper and lower points of the leading edge
respectively. The volume of the gas behind the leading edge of the thermal wave is
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The mean gas temperature may be determined by using the law of conservation of thermal energy

E= CTS 0dV
v

which gives
r z,({)
T(®)=——1\ R*(,t)exp{—z/Z}dz}
nCpo {z§,) “)

If g varies with height z according to the equation a = gyexp[—z/Z}, the equation for R(z, t) coincides
with the analogous equation for the leading edge of the shock wave derived in [1}]
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where in contrast to [1]
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The solution of Eq. (5) has the same form as that derived in [1]

1 —x z , 1 z ‘-.]
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R (z, ) — Zo arc cos {

The difference between the laws of motion of the leading edges of the thermal and shock waves is due
to the difference in the t = t(x) relationships. For the thermal wave
x
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The time required to break through the atmosphere t; =t(x=1) depends more strongly on the parame-
ters of energy release than in the case of the shock wave; with increasing energy E it falls in accordance
with the law t, ~ E™", whereas for a shock wave t; ~E~1/2. This also applies to the dependence of t; on the
air density p,. Since according to [1] the deviation of the shock wave from spherical form becomes appre-
ciable for t ~t{/6, and that of the thermal wave for t ~ 10"2t1 (if n=3), we may reasonably assert that the
thermal wave departs from gpherical form more rapidly than the shock wave.

Figure 1 (curves 1, 2, 3, 4) shows the profiles of the leading edge of the thermal wave [curves R(z)]
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at the instants corresponding to values of the dimensionless parameter x = 0.2, 0.5, 0.8, and 1. The de-
pendence of x on time t differs for different n. The x = x(t) curves calculated with the help of Eqg. (8) for

n =3, 5, 7 (curves 1, 2, 3 respectively) are presented in Fig. 2. The set of data presented in Figs. 1 and 2
enable us to determine the profile of the thermal wave at various moments of time.
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